至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Glycoside hydrolase from the GH76 family indicates that marine Salegentibacter sp Hel_I_6 consumes alpha-mannan from fungi

ISME J. 2022-04; 
Vipul Solanki, Karen Krüger, Conor J Crawford, Alonso Pardo-Vargas, José Danglad-Flores, Kim Le Mai Hoang, Leeann Klassen, D Wade Abbott, Peter H Seeberger, Rudolf I Amann, Hanno Teeling, Jan-Hendrik Hehemann
Products/Services Used Details Operation
Plasmid DNA Preparation … The synthetic gene was cloned into the pET28a(+) vector using the NheI and XhoI restriction sites (GenScript pvt Ltd., Piscataway, NJ, USA). The WT plasmid was used as template to … Get A Quote

摘要

Microbial glycan degradation is essential to global carbon cycling. The marine bacterium Salegentibacter sp. Hel_I_6 (Bacteroidota) isolated from seawater off Helgoland island (North Sea) contains an α-mannan inducible gene cluster with a GH76 family endo-α-1,6-mannanase (ShGH76). This cluster is related to genetic loci employed by human gut bacteria to digest fungal α-mannan. Metagenomes from the Hel_I_6 isolation site revealed increasing GH76 gene frequencies in free-living bacteria during microalgae blooms, suggesting degradation of α-1,6-mannans from fungi. Recombinant ShGH76 protein activity assays with yeast α-mannan and synthetic oligomannans showed endo-α-1,6-mannanase activity. Resolved structure... More

关键词