至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Multi-omic analysis of selectively vulnerable motor neuron subtypes implicates altered lipid metabolism in ALS

Nat Neurosci. 2021-11; 
Hojae Lee, Jae Jin Lee, Na Young Park, Sandeep Kumar Dubey, Taeyong Kim, Kai Ruan, Su Bin Lim, Seong-Hyun Park, Shinwon Ha, Irina Kovlyagina, Kyung-Tai Kim, Seongjun Kim, Yohan Oh, Hyesoo Kim, Sung-Ung Kang, Mi-Ryoung Song, Thomas E Lloyd, Nicholas J Maragakis, Young Bin Hong, Hyungjin Eoh, Gabsang Lee
Products/Services Used Details Operation
Custom DNA/RNA Oligos … -specific vulnerability, we conducted gene-set enrichment analysis using a ranked list of genes by the degree of their expression. HB9::GFP + enriched … Data were normalized by GAPDH expression level and all primers were designed using GenScript primer design software. … Get A Quote

摘要

Amyotrophic lateral sclerosis (ALS) is a devastating disorder in which motor neurons degenerate, the causes of which remain unclear. In particular, the basis for selective vulnerability of spinal motor neurons (sMNs) and resistance of ocular motor neurons to degeneration in ALS has yet to be elucidated. Here, we applied comparative multi-omics analysis of human induced pluripotent stem cell-derived sMNs and ocular motor neurons to identify shared metabolic perturbations in inherited and sporadic ALS sMNs, revealing dysregulation in lipid metabolism and its related genes. Targeted metabolomics studies confirmed such findings in sMNs of 17 ALS (SOD1, C9ORF72, TDP43 (TARDBP) and sporadic) human induced pluripotent... More

关键词