至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Parallel droplet microfluidics for high throughput cell encapsulation and synthetic microgel generation

naturemicrosystems & nanoengineering. 2018; 
Devon M. Headen, José R. García & Andrés J. García
Products/Services Used Details Operation
Peptide Synthesis Microfluidic devices were primed with light mineral oil (Sigma) containing 2% SPAN80 (Sigma), which was also used as the continuous phase fluid. The crosslinker emulsion was comprised of 30 mg mL−1dithiothreitol (DTT; Sigma) emulsified at a 1:15 ratio in the continuous phase. The macromer solution consisted of 6.5% (w/v) PEG-4MAL (20 kDa, Laysan Bio, Arab, AL, USA), which had been reacted with a cell adhesive peptide (1.0 mM, Genscript, Piscataway, NJ, USA) that was pre-conjugated to AlexaFluor594 (Thermo Fisher, Waltham, MA, USA) to enable imaging and for consistency with cell encapsulation experiments. Get A Quote

摘要

Cells can be microencapsulated in synthetic hydrogel microspheres (microgels) using droplet microfluidics, but microfluidic devices with a single droplet generating geometry have limited throughput, especially as microgel diameter decreases. Here we demonstrate microencapsulation of human mesenchymal stem cells (hMSCs) in small (<100 μm diameter) microgels utilizing parallel droplet generators on a two-layer elastomer device, which has 600% increased throughput vs. single-nozzle devices. Distribution of microgel diameters were compared between products of parallel vs. single-nozzle configurations for two square nozzle widths, 35 and 100 μm. Microgels produced on parallel nozzles were equivalent to those p... More

关键词